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In the past several years there has been a lot of interest in the design of efficient 
autonomous intelligent controllers for Unmanned Aerial Vehicles (UAV). This is a highly 
complex and challenging problem since future UAVs will be expected to complete 
autonomously a wide variety of complex missions, and achieve performance comparable to 
that of manned vehicles. In this paper a four-layer autonomous intelligent control 
architecture for UAVs is described, and related issues are discussed. The architecture 
consists of the following layers: (i) Redundancy Management Layer that consists of the on-
line Failure Detection and Identification (FDI) and robust feedback Adaptive 
Reconfigurable Controller (ARC); (ii) Autonomous Trajectory Generation (ATG) layer 
whose role is to fit feasible trajectories through the desired way-points in real time; (iii) 
Autonomous Path Planning (APP) layer that generates way-points on-line in response to a 
dynamically changing environment; and (iv) Autonomous Decision Making (ADM) layer 
whose role is to assess the available control authority after failures, and make mission-
related decisions in near-real time. The main distinguishing feature of the architecture is 
that its layers are connected through the Achievable Dynamic Performance (ADP) 
calculation module which results in a system in which all the decisions are made based on 
the current available resources. Recent extensions of this architecture are also discussed and 
described in detail. At the end, a discussion is included on the Verification and Validation 
(V&V) of intelligent and adaptive control systems, and some recent results are presented. 

Nomenclature 
bi  =  ith column of matrix B  
p  =  Unknown parameter vector 
r  =  Reference input vector  
t =  Variable denoting time 
u  =  Control input vector 
ui  =  ith control input (ith entry of u)  
(ui)min  =  Lower bounds on the ith control input  
(ui)max  = Upper bounds on the ith control input  

! 

u i   =  Upper bound on the magnitude of rate of change of ith control input  
v  =  Auxiliary control input vector 
w =  Exogenous input vector  
x =  State vector of plant  
xm  =  State vector of reference model  
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x1  =  Kinematic state vector  
x2  =  Dynamic state vector  

! 

˙ x    = Derivative of state vector with respect to time  
z  =  Persistent disturbance input  
β =  Relative scalar weight on auxiliary control input  
η  =  Achievable dynamic performance variable  
λ  =  Discrete-valued system mode (such as flight control mode)  
µ  =  Costate vector  
ρi  =  Risk potential for threat  
Δt  =  Sampling time used for time discretization  
A, B  =  State space matrices of linearized plant model  
Am, Bm  =  State space matrices of reference model  
Im×m  =  Identity matrix of size m × m  
J  =  Risk functional  
M  =  Total number of threats  
Su =  Set of admissible control input vectors  
Sη =  Achievable dynamic performance set  
 

I. � Introduction 
nmanned Air Vehicles (UAV) are becoming an integral part of future military forces. It is envisioned that 
future UAVs will perform autonomously complex tasks such as Intelligence, Surveillance and Reconnaissance 

(ISR), Close Air Support (CAS), Suppression of Enemy Air Defenses (SEAD), aerial refueling, and precision strike 
missions. The UAV formations will be required to achieve autonomous fault-tolerant and collision-free operation 
and conflict resolution when carrying out such missions. It is envisioned that ”swarms” of autonomous UAVs with 
an effective coordination strategy will lead to superior performance and efficient utilization of resources, and will 
achieve effective force superiority in a future battlefield. To achieve these objectives with minimum human 
intervention and in the presence of large external disturbances, different threats, flight-critical failures, and battle 
damage, there is a growing interest in developing highly efficient Autonomous Intelligent Flight Control Systems 
(AI-FCS) for both single and multiple UAVs, which is recognized to be a major enabling technology for their 
autonomous operation in dynamically changing environments.  

There are numerous challenges facing the designer of such autonomous control systems. One of these is the 
situational awareness of the control system. This is closely related to the type of sensors that the vehicle is equipped 
with (radar, LIDAR, optical sensors, GPS). These sensors should provide the vehicle’s control system with the 
information on its location in space with respect to the known landmarks, such as those arising from the DTED 
maps, threats, obstacles, and other manned and unmanned aerial vehicles sharing the same theater of operation. 
Another important issue is autonomous control reconfiguration in the presence of subsystem and component 
failures, battle damage, and other upsets. Hence one of the objectives is to design a reliable and efficient on-line 
Failure Detection and Identification (FDI) and Adaptive Reconfigurable Control (ARC) system that can effectively 
compensate for severe failures and battle damage and assure vehicle’s survivability. The control system will also 
need to autonomously design and redesign trajectories that the UAV should follow. Hence another challenge is to 
design an efficient trajectory management system. One of the issues that arises in this context is to provide 
meaningful models of the vehicle’s post-failure/damage dynamics to the trajectory management system. The latter 
also needs to estimate the maximum performance that can be achieved post-failure/damage, and redesign the way-
points and trajectories accordingly. In addition, the control system needs to make mission-related decisions 
autonomously. Another issue is that of communications with other manned and unmanned vehicles and the 
command center. Additional challenges include integration of the overall control system, its testing, and Verification 
and Validation (V&V).  

In this paper some of these challenges will be discussed, and a hierarchical autonomous intelligent flight control 
system for UAVs, that is currently under development, will be described. Particular emphasis will be put on the 
concept of Achievable Dynamic Performance (ADP), i.e. the maximum performance that can be achieved under 
failures and disturbances, as the related measure is the main link between different levels of hierarchy. V&V of 
intelligent control systems will also be discussed in detail, and some recent results will be presented.  

U 
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The main contribution of the paper is an architecture for autonomous intelligent control of UAVs in which the 
layers are connected through the Achievable Dynamic Performance (ADP) calculation module. This results in a 
system in which all the decisions are made based on an optimum use of the current available resources.  

II. � Issues in Autonomous Intelligent Control Design  
In this section the desired functionality of an Autonomous Intelligent Flight Control System (AI-FCS) is 

described, and important issues that arise in its design and implementation are discussed.  

A. Autonomous Intelligent Control 
One of the first questions that arises in the context of intelligent control design is the definition of Autonomous 

Intelligent Control. One possible definition is given here: Autonomous intelligent control is execution of a given 
control strategy without human intervention and in an optimal manner, and capability to adapt autonomously and in 
a fast and efficient manner to a new set of circumstances by on-line sensing, information processing and control 
recon figuration. The difference between intelligent and adaptive control can be thought of as being based on the 
amount of uncertainty that can be handled by each approach. While adaptive control can compensate for small to 
moderate uncertainty, intelligent control can achieve the objectives in the presence of very large uncertainties arising 
in dynamically changing environments.  

B. Autonomous Flight Control System for UAVs 
A generalized schematic of an autonomous control system for UAVs that shows its desired functionality is given 

in Fig. 1. At the lowest level is the inner-loop controller, also referred to as the redundancy management system. The 
desired role of the inner-loop controller is to assure rapid stabilization of the overall system in the presence of 
failures, battle damage and state, control input and vehicle constraints, and improve accuracy of vehicle models 
through on-line learning. The inner-loop controller should therefore consist of several interconnected on-line 
subsystems including the Failure Detection and Identification (FDI) subsystem, Adaptive Reconfigurable Control 
(ARC) subsystem, control allocation subsystem and on-line learning and identification subsystem. This controller 
interprets and executes the commands generated by the outer-loop controller. The desired role of the latter, also 
referred to as the trajectory management system, is to react to unanticipated events by recon figuring path and 
trajectory to avoid pop-up threats or pursue targets of opportunity. Based on situational awareness and other sensory 
information, the decision-making layer is desired to make in near-real-time mission-related decisions including: (i) 
decisions whether (or not) to pursue a target of opportunity, (ii) decisions whether to continue, retask, or abort the 
mission, (iii) decisions based on available control authority after subsystem or component failure or damage. Related 
issues arising from the above architecture and its desired functionality are discussed below.  

C. Autonomous Decision Making (ADM) 
 One of the major challenges in the design of autonomous control systems for UAVs is to devise suitable 
decision-making mechanisms and corresponding algorithms. The autonomous control system needs to have timely 
information about its internal state and external world, estimate accurately its available resources, and make rapidly 
corresponding decisions. For instance, in the case of subsystem or component failures, the available control 
authority in the post-failure vehicle may be lower than that in the nominal case. In such a case, the control system 
needs to compare the available resources with those needed to execute the original mission plan, and make a 
decision to continue, retask, or abort the mission. 

D. Autonomous Path Planning (APP) and Autonomous Trajectory Generation (ATG) 
 Another important design challenge is to arrive at efficient algorithms for on-line generation and execution of a 
motion plan that enables the vehicle to move to a desired location and perform a given task, even while avoiding 
obstacles and radar detection. Given different way-points along a desired path, the objective of the Autonomous 
Trajectory Generation (ATG) system is to fit a feasible trajectory through the way-points, given the vehicle, terrain 
and control input constraints. Many of the trajectories can be calculated off line and stored. However, in the 
presence of pop-up threats, subsystem or component failures, and/or structural damage, the trajectory may need to 
be recon figured on-line to reflect the new environment, or the new achievable dynamics, or both. The control 
system will need to generate and execute the mission plan in near real-time and in an environment with a complex 
topology and with dynamically changing and uncertain components. Different motion planning techniques have 
been extensively applied in robotics,34 and some of those have been applied in aerospace as well. Other techniques 
that have been used in aerospace include those based on the so-called probabilistic maps35 and Voronoi diagrams.26 
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There are several available approaches to trajectory generation, including that based on the two-point boundary 
value problem,47 the approach based on differential flatness and Linear Matrix Inequalities,27,43 dynamic-
programming-based approach,28 and that based on Rapidly-exploring Random Trees (RRT).35 The techniques differ 
in the required computing power, capability of near real-time operation, fast reconfiguration capability in the 
presence of changes in the environment, robustness to initial guesses, choice of optimization criteria, etc. There is a 
need to compare different techniques and arrive at a solution that is best suited for autonomous near real-time path 
planning and trajectory generation for UAVs. In addition, another important issue is that of providing a meaningful 
model to the ATG system post-failure. Severe failures or battle damage may substantially change the vehicle 
dynamics, and corresponding dynamic models may not be available. Hence some type of learning mechanism is 
needed to identify the model of the vehicle dynamics post-failure and use it for autonomous trajectory generation. 
 

 
Fig. 1  Structure of the Autonomous Control System for UCAVs (courtesy of Scientific Systems Company, 
Inc.). 

E. Fault-Tolerant and Reconfigurable Control 
In the past several years there has been substantial progress in the area of fault-tolerant and reconfigurable 

control designs for both manned and unmanned aircraft.1,3,8,16,19,22,23 The results so far have demonstrated the 
potential of the recon figuration techniques to maintain automatically the desired aircraft performance despite severe 
control effector failures and structural or battle damage. Several of those approaches have been extensively tested 
through piloted simulations,8 and even flight tested.5,19 However, most of the proposed techniques are complex and 
it is not clear at all as to how to integrate them with the guidance and path-planning loops to achieve truly 
autonomous operation under different upsets, failures and unanticipated events. In the context of fault-tolerant and 
reconfigurable control, important issues include: (i) How to model different cases of critical failures and structural 
damage, but avoid a large number of models? (ii) How to integrate different on-line Failure Detection and 
Identification (FDI) and Adaptive Reconfigurable Control (ARC) algorithms to cover different types of upsets 
including sensor faults, control effector failures, and structural and battle damage? and (iii) How to change the 
Control Allocation Algorithms (CAA), arising in the context of overactuated aircraft, in the presence of failures, 
battle damage and other upsets?  

F. Verification & Validation (V&V) 
Increased autonomy of the future UAVs will require more extensive and thorough procedures for functional and 

software Verification and Validation (V&V) of their control system behavior in response to anticipated and 
unanticipated events or threats, subsystem and component failures, and battle damage. The on-line learning and 
adaptation associated with failure or battle damage accommodation, trajectory and path replanning, and on-line state 
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estimation and model identification in autonomous intelligent control systems makes the related V&V problem 
highly complex and often intractable. The issues arising in V&V of intelligent and adaptive flight control systems 
are discussed in detail in section VII.  

G. Autonomous Intelligent Control of Multiple UAVs 
In the context of multi-vehicle combat missions, integral components of the autonomous formation control 

scheme should include: (i) An autonomous path planning subsystem whose role is to generate feasible paths for the 
entire formation; (ii) An autonomous trajectory generation subsystem that generates desired temporal trajectories 
that can be followed by all vehicles in the formation; and (iii) An autonomous formation hold subsystem that 
initializes and maintains the formation throughout the mission. Given the complex nature of the corresponding tasks, 
the design of each of the above components can be truly formidable. The path planner should generate a path that 
avoids pop-up threats, and takes advantage of targets of opportunity whenever they arise. The trajectory generator 
should optimize the performance of the entire fleet while making sure that the commanded trajectories are within the 
performance limitations of all the vehicles. The formation hold autopilot should maintain the formation in a robust 
and collision-free manner, even in the face of large maneuvers of the entire formation. Most importantly, to allow 
flexible and efficient coordinated control of multiple vehicles, all these three components need to be designed and 
implemented in a decentralized fashion. 

H. Quality of Information (QoI) 
Each UAV’s knowledge about itself and its environment can be grouped into private information that is obtained 

from on-board sensors (e.g. a proximity sensor), and communicated information that is obtained through a wireless 
network (e.g. time-division-multiple-access (TDMA) network such as Link-16). At each level of the hierarchical 
control structure, the information is processed to arrive at the appropriate decisions, including striking targets. A key 
issue is the quality of information (QoI) used in these decision making processes. Intuitively, a piece of information 
is said to be of high quality if it is closer to the truth. This notion of QoI has been formalized using Kullback-Leibler 
information distance and applied to autonomous decision-making.42 An intelligent control system determines the 
QoI of the received information and, if the QoI is above a threshold, uses the data to carry out its mission. This 
provides a higher level of reliable autonomous operation against communication faults (jamming, packet drops, 
etc.), and malicious tampering of data. 

III. � Autonomous Intelligent Controller for UAVs  
In this section one possible approach to the autonomous intelligent control design for UAVs is described. A 

hierarchical control architecture is presented next, followed by a description of the basic approach to FDI-ARC 
design and V&V.  

Several existing architectures for autonomous intelligent control for UAVs are discussed first, and the main 
distinguishing features of the architecture proposed in this paper are discussed.  

Hierarchical Control Structure. While the generalized architecture from Figure 1 has been widely accepted in 
the field, the existing hierarchical controllers differ in the ways in which each of the blocks is implemented. For 
instance, the Decision Making Block is often replaced with a mission-level layer where pre-calculated paths and 
trajectories are stored and commanded to the vehicle to follow. This block can also carry out path or trajectory 
replanning in response to the changes in the environment. The outer-loop controller can be implemented as two 
separate blocks [Autonomous Path Planning (APP) and Autonomous Trajectory Generation (ATG)], or as a single 
Autonomous Motion Planning block.28 Additional blocks may be needed to implement a specific path planning or 
trajectory generation algorithm.2  

A. Hierarchical Autonomous Intelligent Controller 
To address some of the issues discussed in the previous section, a hierarchical architecture for the Autonomous 

Intelligent Flight Control System (AI-FCS), shown in Figure 2, is proposed, and several of its elements are defined 
and studied. Different layers and blocks are described below.  
 Achievable Dynamic Performance (ADP). The main distinguishing feature of the proposed Hierarchical 
Autonomous Intelligent Controller is the Achievable Dynamics Performance (ADP) block. ADP is de fined as the 
maximum performance that the vehicle can achieve under different faults, failures, and external disturbances in a 
dynamically varying environment. For instance, in the case of wing damage in a fixed-wing UAV, the damage may 
not only render one or more control effectors ineffective, but will also result in aerodynamic perturbations due to 
asymmetry that will severely limit the tasks that the vehicle can achieve post-damage. In the proposed architecture, 
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an ADP measure is calculated on-line at the inner-loop control level, and passed on to the higher hierarchical levels 
that make appropriate changes to reflect the new lowered capabilities of the vehicle. The ADP concept is described 
in detail in the following section. 
 
 Level 4: Decision-Making Layer. This layer has the information about the overall mission objectives and 
constraints. This information, in conjunction with the sensory and ADP information and situational awareness, is 
used to make appropriate decisions as trade-offs between the mission success and vehicle survivability. This layer is 
responsible for collision avoidance, conflict resolution, mission retasking, and goal reassessment.  
 Level 3: Path Planning Layer. The role of this layer is to generate the motion plan for the overall mission, and 
compute spatial and other constraints needed for the design of the desired trajectories. Many of the routes and 
constraints can be computed off-line to cover different situations, including the nominal case and a set of anticipated 
events, and stored in memory. The constraints are computed in the form of safe set boundaries around the way-
points. An example of way-points and constraints in the nominal case (i.e. the case without disturbances, failures, 
upsets, and unanticipated events) is shown in Figure 3(a). This layer also constantly monitors current ADP measure, 
vehicle dynamics and external events, and, if necessary, recon figures/changes the precomputed path. This is 
illustrated in Figure 3(b) in the case of a pop-up threat. As seen from the figure, the way-points and the safe set 
boundaries are recomputed on-line to avoid the threat.  
 

 
Fig. 2  Structure of the Hierarchical Controller (courtesy of Scientific Systems Company, Inc.). 

 
In this context a simplified path planning algorithm applicable to a two-dimensional case has been recently 

developed. The design procedure is illustrated in Figure 4. Beginning at the top left corner of Figure 4, a coordinate 
transformation is applied so that the threat region becomes a unit circle centered at the origin (z-domain). Then, a 
conformal transformation is applied to interchange the threat region’s interior and exterior (ω-domain). The problem 
is to plot a course between the current spatial state and the desired final spatial state that lies inside the unit circle. 
Since the conformal transformation takes ∞ to 0, trajectories that come close to zero in the ω-domain will be 
mapped back into unbounded trajectories. Therefore, a trajectory that is close to the circle is chosen (see Figure 4). 
Another possibility is to put way-points within the unit circle, map them back and generate trajectory between the 
way-points. If there are multiple threats as shown in the bottom left corner of Figure 4, then an ellipsoid of minimum 
volume (area) that contains all the threats is computed first to reduce the situation to the one just discussed.  
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Fig. 3 Autonomous path planning: (a) Nominal case; (b) On-line path reconfiguration due to a pop-up threat 
(courtesy of Scientific Systems Company, Inc.). 

 
It may be more reasonable in situations such as the one shown in Figure 5 to view threats as regions of varying 

risk rather than as regions to be avoided completely. To formulate trajectory generation problem in this case, let us 
attach to each trajectory 

! 

x(t), t " 0,T[ ]  a risk value:  
 

! 

J (x) = "i
0

T

#
i=1

M

$ (x(t))dt  

 
where ρi is a differentiable positive function describing the risk potential associated with the ith threat, and M is the 
total number of threats known to the decision-maker. Typically, the functions ρi roll-off away from the threat region. 
The trajectory generation problem is to find a state trajectory from the current state to the final state that minimizes 
the risk functional J subject to system dynamics and constraints. This is a problem in variational calculus and is 
often very difficult to solve.20 The computational difficulties associated with a direct solution of the risk 
minimization problem can be alleviated by decomposing the problem into a Level-3 path planning problem followed 
by a Level-2 trajectory generation as described next. Note that the equations of motion (EOMs) of flight vehicles 
have the following general form*:  

 
 

! 

˙ x 1 = f1(x2)   (1) 
 
 

! 

˙ x 2 = f2 (x1, x2,u)  (2) 
 
 

where x1 is a vector of kinematic state variables, x2 is a vector of dynamic state variables and u is a vector of control 
inputs. Examples of kinematic variables are inertial position and Euler angles, and examples of dynamic variables 
are airspeed, side-slip angle, rotational rates, and flight path angle. It is reasonable to assume that the risk potential ρi 
is a function only of the kinematic states so that:  

 
J(x)= J(x1) 

 
i.e, the risk value associated with a trajectory depends only on the path. Now, if J is a constant for all paths, then a 
path given by the solution of 
 

                                                             
*This form is valid under some assumptions.  For example, dependence of air density on altitude, which is a state variable is 
neglected. 
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! 

˙ x 1 = "x1 + x
1
f

x1(0) = x1
0  

where 

! 

x1
0  and 

! 

x
1

f  are the initial and final kinematic states respectively, will surface for all practical purposes. 
Moreover, since kinematics is invertible, one has that 
 

! 

x2

command = f1
"1

˙ x 1( ) = f1
"1 = "x1 + x

1

f( )  

 

 
Fig. 4  Trajectory generation under pop-up threats -2D case (courtesy of Scientific Systems Company, Inc.). 

 

 
Fig. 5 Trajectory generation under pop-up threats -case for risk minimization. 

 
as the command for the lower-level trajectory generator. The equation for 

! 

˙ x 1  can be generalized to include a 
reference model and, in fact, such a generalization is needed to accommodate the nonlinear nature of J. Furthermore, 
it is desirable to have forcing function 

! 

g x
1

f
" x1( )  to be somewhat uniform in magnitude throughout the domain and 

not increasing as is the case with a linear function above. With these observations, the following variational path 
planning problem is proposed:  
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! 

min
v

" v t( )#
0

T

$ v t( )dt + %i x1 t( )( )
0

T

$ dt

i=1

M

&
' 

( 

) 
) 

* 

+ 

, 
, 
 (3) 

 subject to

! 

˙ x 1 = g x
1
f
" x1( ) + v1, x1 0( ) = x1

0
, x1 T( ) = x

1
f  (4) 

 
 
 

 
Fig. 6 Path planning using a combination of risk minimization and reference model tracking. 

where v is an auxiliary control input, T is an unspecified final time and g is a differentiable positive function with 
properties mentioned above. A suitable candidate for g is 
 

! 

g z( ) = c1e
"c

2
# z z( )z  

 
where c1 > 0 and c2 > 0. Using standard variational principles,20 one obtains 
 

 

! 

˙ x 1 = g x
1

f " x1( ) " µ

#
 (5) 

 

 

! 

˙ µ = "
#g x

1

f " x1( )
#x1

µ "
#$i x1( )
#x1

i=1

M

%  (6) 

 
as necessary conditions for stationary solution. The above equations should now be simulated to obtain the path 
from initial state 

! 

x1
0  to 

! 

x f
0 . Figure 6 shows a path computed using this method.  

It should be noted that the above described method does not always give a path along which the risk is close to 
its minimal value. This is because of the g-dependent terms in (5-6). On the other hand, without these terms, the 
variational solution as presented above may not provide a path that ends in the specified final state because the 
initial and final co-state conditions are not searched for. The advantage of this method, in addition to its 
computational speed, is that the existence of a path is guaranteed by choosing g properly. Homotopy or pheromone 
trail methods can then be applied to obtain better solutions.  
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 Level 2: Trajectory Generation Layer. The role of this layer is to fit a feasible trajectory through the way-points 
even while satisfying the state, control input, and spatial constraints. Trajectory generation is commonly based on 
minimization of a given criterion (e.g. time between the way points, fuel consumption, or low exposure to known 
stationary threats), and can be generated either on-line or off-line. In the case of failures, upsets, or other anticipated 
or unanticipated events, the path planning layer automatically recon figures the desired path by modifying the way-
points, while the trajectory generation layer fits a feasible trajectory that is achievable under the circumstances. To 
simplify the on-line trajectory re-design, the ATG system may be equipped with a Motion Primitives Library (MPL) 
that contains the so-called trim trajectories and maneuvers, de fined as transitions between the trim trajectories. The 
role of this layer is illustrated in Figure 7. In the nominal case, Figure 7(a), the trajectory generation layer fits a 
feasible trajectory by minimizing a given criterion (for instance fuel consumption), depicted by a solid line, between 
the way-points, In the case of a sudden pop-up threat (e.g. a previously undetected SAM site), the trajectory 
generation layer fits a new feasible trajectory. The new trajectory will depend on the time instant when the 
information about the new way-points and constraints was received by the trajectory generation layer. In the case 
from the figure it is assumed that this information was received at the second way-point. If, in addition to the pop-up 
threat, there is an upset condition, the vehicle cannot achieve the same performance (e.g. acceleration) as in the no-
upset case, and the way-points and the desired trajectory need to be modified accordingly in order to avoid the 
unsafe zone with the available ADP. An initial discussion on on-line trajectory generation in the context of the 
architecture from Figure 2 is given in Ref. 43. 
 
 

 
Fig. 7  Autonomous trajectory generation: (a) Nominal case; (b) On-line trajectory reconfiguration due to a 
pop-up threat (courtesy of Scientific Systems Company, Inc.). 

 Level 1: Redundancy Management Layer. The role of this layer is to ensure accurate following of the desired 
trajectory in the presence of different disturbances, failures and upsets. This layer is shown in Figure 8, and includes 
robust on-line FDI-ARC system that detects and identifies different failures, battle damage and disturbances, and 
recon figures the controller accordingly. The control allocation algorithm associated with the FDI-ARC system is 
designed to optimize redundancy management in the presence of control input constraints and varying available 
control authority. Previous R&D in the area of Failure Detection and Identification (FDI) and Adaptive 
Reconfigurable Control (ARC) has resulted in the development of several unique technologies, and relevant results 
are described in Refs. 8, 11, 12, 16. Many of the results on FDI-ARC design in the presence of flight-critical failures 
and battle damage are currently being extended and integrated within a hierarchical control architecture. The FDI-
ARC techniques developed in this context are described next.  
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Fig. 8 Detailed Structure of the Level 1 Controller (courtesy of Scientific Systems Company, Inc.). 

B. Failure Detection, Identification and Recon figuration (FDIR)  
In this section two techniques for fast and accurate FDIR of flight-critical failures are described •one based on 

the concept of Multiple Models, Switching and Tuning (MMST), and the other one based on the Decentralized 
FDIR.  
 Multiple Models, Switching and Tuning (MMST). One promising approach to on-line FDI-ARC is based on the 
MMST concept developed by Narendra and coworkers in Ref. 36. This approach has been extended to the FDIR 
framework and an efficient FDI-ARC techniques have been developed.12,18  

The MMST concept is illustrated in Figure 9. In the context of FDI-ARC, the basic idea is to represent different 
failure scenarios using corresponding on-line observers. The observers are used to find the one closest to the current 
operating regime and switch to the corresponding controller. Such an approach has been demonstrated as an efficient 
tool for FDI-ARC in the presence of different control effector failures in overactuated aircraft.17,18 Its main feature is 
that is assures the stability of the overall system and guarantees that, in the presence of unknown failure, the FDI-
ARC scheme will switch to the right controller thus assuring asymptotic convergence of the tracking error to zero.  

 A Decentralized FDIR Scheme. One of the main disadvantages of the above technique is that it is not well 
suited for FDIR in the presence of multiple simultaneous control effector failures. The main reason is that, for such 
failures, accurate models are needed that cover all possible combinations of failures, which results in a prohibitively 
large number of on-line observers. In addition, almost all approaches are highly centralized which results in a highly 
complex hybrid system. For instance, a centralized FDIR system based on the MMST technique and applied in the 
context of flight control is shown in Figure 10. In Refs. 11 and 14 a new Decentralized Failure Detection, 
Identification and Reconfiguration (FDIR) approach that is well suited for FDIR in the presence of multiple 
simultaneous control effector failures is discussed. The structure of the proposed Decentralized FDIR scheme is 
shown in Figure 11. It is seen that, in this case, the scheme is based on the local FDI observers. The Decentralized 
FDIR scheme has been recently evaluated through high-fidelity and piloted simulations at Boeing Phantom Works 
achieving excellent results for the F/A-18 aircraft in the presence of severe flight critical control effector failures.8  

IV. � Related Hierarchical Architectures  
To integrate different hierarchical layers with situational awareness sensors within a comprehensive architecture, 

a new Multi-layer Architecture for Trajectory Replanning and Intelligent plan eXecution (MATRIX) system has 
been recently proposed.45 The main role of the MATRIX system is to integrate threat detection algorithms based on 
Interacting Multiple Models (IMM) with online path planning and trajectory generation within an effective multi-
layer architecture for pop-up threat avoidance under subsystem and component faults and failures. An extension of 
the MATRIX architecture has been recently proposed. The architecture is referred to as the Integrated Motion 
Planning, Awareness and Control Technology (IMPACT) system, and will integrate vision-based pop-up threat 
detection with on-line motion planning for aggressive maneuvering to achieve mission objectives for UAVs under 
different threats and dynamic changes in the environment. The IMPACT architecture is shown in Figure 13 and 
expands the MATRIX architecture from Figure 12 by including a Motion Primitives Library (MPL) for aggressive 
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maneuvering and combining its elements with the Rapidly-exploring Random Trees (RRT) algorithm in the context 
of nonlinear vehicle dynamics. The proposed approach also extends related work on the ViSTA system (Visual 
System for Threat Awareness) under the DARPA Software-Enabled Control (SEC) Program9 where the objective is 
to use stereo vision, Sarnoff’s ACADIA board, advanced perceptual organization techniques and graph theory to 
design vision processing algorithms to detect the size and position of potential threats.  
 
 

 

 
Fig. 9  Structure of the Multiple Model-Based Controller: Outputs of the parallel observers O1 , O2, ... ON are 
used to find that closest in some sense to the current plant dynamics, and switch to the corresponding 
controller (courtesy of Scientific Systems Company, Inc.). 

 

 
Fig. 10  The Decentralized MMST-based Scheme (courtesy of Scientific Systems Company, Inc.). 
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Fig. 11  Decentralized FDIR Scheme (courtesy of Scientific Systems Company, Inc.). 

 
 

 
Fig. 12  Structure of the multi-layer architecture for trajectory replanning and intelligent plan execution 
(MATRIX) (ADP – achievable dynamic performance, MRS – maximum reachable sets) (courtesy of Scientific 
Systems Company, Inc.). 

The major differences between the MATRIX/ViSTA and IMPACT architectures are as follows: (i) The 
MATRIX architecture is well suited for slow9 to moderately aggressive maneuvers,45 while the main focus under the 
IMPACT architecture is on aggressive maneuvers. (ii) The VISTA system is based on perceptual organization, 
graph theory and stereo vision. This approach is well suited for large vehicles that can provide a wide stereo baseline 
for improved range resolution. The IMPACT vision processing shares the same foundation, but is based on optical 
flow measurements, which are more appropriate for smaller vehicles. One of the major differences between the RRT 
motion planner being developed under the MATRIX project, and the one under the IMPACT architecture is that the 
former will be developed for a class of linear models of vehicle dynamics, while the latter will be based on nonlinear 
vehicle dynamics and the library of motion primitives.  
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Fig. 13  Structure of the integrated motion planning, awareness and control technology (IMPACT) system 
(courtesy of Scientific Systems Company, Inc.). 

V. � Achievable Dynamic Performance (ADP)  
In autonomous intelligent control of UAVs, the reconfigurable flight controller compensates for the effect 

disturbances, structural damage or subsystem failures that occur in the course of the mission. In such cases, a portion 
of the available Control Input Redundancy (CIR) is used to compensate for these effects through control recon 
figuration, which in turn results in lower available CIR. In critical cases, this may lead to situations in which the 
vehicle cannot achieve desired performance in all segments of the mission. For instance, maximum speed of the 
vehicle’s response after control reconfiguration may be too low to avoid a missile, even though the ”healthy” vehicle 
could readily achieve this.  

An important concept in this context is that of the Achievable Dynamic Performance (ADP), i.e. the maximum 
performance, de fined in a suitable space, that the vehicle can achieve under different circumstances. A suitable 
ADP measure appears to be the ADP set that de fines all points that can be achieved with available control authority.  

In order to calculate the ADP set immediately following failures, structural damage, or effects of disturbances, 
the ADP subsystem needs to receive on-line information from the Failure Detection and Identification (FDI) 
subsystem.  

The ADP measure is critically important for determining whether or not the vehicle is capable of continuing and 
completing the mission. The corresponding decisions are made by the Autonomous Decision Making (ADM) 
subsystem described briefly in the previous section.  
 The main idea behind the approach to the ADP discussed here is to convert the dynamic tracking problem into a 
static one and solve it either on-line or off-line using suitable constrained optimization techniques. For instance, if 
the desired trajectory is known in advance and if there are no disturbances and/or failures or other upsets, the ADP 
set can be calculated off-line for different segments of a mission. Since compensation for different failures, upsets 
and disturbances results in lower ADP, the proposed online ADP subsystem calculates the maximum performance 
that can be achieved under dynamically changing circumstances.  

The ADP problem will be considered next, and the manner in which it depends on the FDI information will be 
discussed.  

The Tracking Problem. Let the plant dynamics be described by  
 
 

! 

˙ x = f x( ) + Bu   (7) 
 
where x and u are respectively n and m-vectors and f is a smooth vector function, and let m > n, i.e. there are more 
inputs than the variables to be controlled. It is assumed that the control effectors are subject to both position and rate 
limits, i.e. 

! 

u " Su = u : ui( )
min

# u # ui( )
max

, ˙ u i # u i ,i = 1,2,...,m{ } , Let the objective be to design a u(t) such that 
the error x(t) - xm(t) asymptotically converges to zero, where xm is a state vector of a reference model specifying the 
desired performance of the plant:  

 
 

! 

˙ x m = Am xm + Bm r  (8) 
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where Am is an asymptotically stable matrix, and r is a smooth bounded function of time. Then, for x(0) = xm(0), the 
tracking problem under input constraints can be converted to a static problem for every t: Minimize εTQε, where ε = 
Bu - η, subject to the constraints u ∈ Su, where  
 
 

! 

" t( ) = # f x t( )( ) + Am xm t( ) + Bmr t( )   (9) 
 
The ADP problem can be studied analytically in terms of a static equation of the form 

 
Bu = η, 

 
where u ∈ Su and η is defined above.  

A. The ADP Problem in the Ideal Case 
 Find the set Sη = {η : η = Bu, u ∈ Su} that can be achieved with u ∈ Su. In other words, the objective is to find 
the largest set Sη that can be achieved with available control authority. Once this set is found, the problem reduces to 
assuring that the actual η(t) is within the set for all time.  

The problem of finding the set Sη can be solved using Linear Matrix Inequalities (LMI) tool in Matlab, upon 
converting the constraint u ∈ Su into an LMI as follows.  

The derivative of u can be approximated as 
 

 

! 

˙ u i "
ui k( ) # ui k #1( )

$t
,  i = 1, 2, …, m,   k= 1, 2, … (10) 

 
where t = kΔt, and Δt denotes the sampling period.  
 Hence from u ∈ Su one has: 
 
 

! 

ui k "1( ) " u i#t $ ui k( ) $ ui k "1( ) + u i#t  (11) 
 
This set of inequalities can be represented as an LMI of the form C1u(k) ≤ d1(k -1), where  

 

 

  

! 

C1 =
Im"m

#Im"m

$ 

% 
& 

' 

( 
) , d1 k #1( ) =

u1 k #1( ) # u 1*t

M

um k #1( ) # u m*t

#u1 k #1( ) # u 1*t

M

#um k #1( ) # u m*t

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 

  (12) 

 
Further, position limits can be represented as an LMI of the form C2u ≤ d2, where  
 

 

  

! 

C2 =
Im"m

#Im"m

$ 

% 
& 

' 

( 
) , d2 =

u1( )
max

M

um( )
max

# u1( )
min

M

# um( )
min

$ 
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& 
& 
& 
& 
& 
& 
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) 
) 
) 
) 
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 (13) 

 
Hence one has 
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! 

C1

C2

" 

# 
$ 

% 

& 
' u k( ) (

d1 k )1( )
d2

" 

# 
$ 

% 

& 
' ,k = 1,2...   (14) 

 
In the following paragraphs, in order to illustrate the ADP concept in simple terms, it will be assumed that there 

are only position limits on the control effectors.  

B. The ADP Problem in the Presence of Control Effector Failures 
1) Hardover Failures. In the case of hardover failure of the ith control effector, the objective is to find the set Sη 

from the equation:  
 
 b1u1 + b2u2 + ... + bi-1 ui-1 + bi+1ui+1 + ... + bmum = η - bi(ui)max,  (15) 

 
where bj is the jth column vector of B from Eq. (10), subject to the inequality constraints (ui)min ≤ ui ≤ (ui)max.  

2) Lock-in-Place Failures. The objective is the same in the case of lock-in-place of the ith effector, except that 
(ui)max is substituted by ui, i.e. the value at which the effector has frozen.  

3) Loss-of-Effectiveness Failures. In the case of loss-of-effectiveness failure of the ith control effector, the 
objective is to find the set Sη from the equation:  
 
 b1k1u1 + b2k2u2 + …+ bikiui+ ... + bm kmum = η   (16)  
 
subject to the inequality constraints (ui)min ≤ ui ≤ (ui)max, where kj =1, j =1, 2, ..., m, j ≠ i, and 

! 

ki = k i " [0,1) . 

C. The ADP Problem in the Presence of Persistent External Disturbances 
 Let Eq. (7) be of the form: 

 
 

! 

˙ x 2 = f (x) + Bu + z  (17) 
 
where z denotes a vector of bounded external disturbances such that z(t) 

! 

" z for all time. Then the ADP problem is 
the following: Find the set Sη from the equation 
 
 

! 

b1u1 + b2u2 + ...+ bm um = "# z   (18) 
 
where 

! 

z  is either a measured or an estimated value, subject to the inequality constraints (ui)min ≤ (ui) ≤ (ui)max. 
Example: Let m =3 and n =2. In this case, from Eq. (10) it follows that b1u1 +b2u2 +b3u3 = η, where bi and η are 2-
vectors. Let (ui)max = -(ui)min =1, b1 = [2 1]T , b2 = [1 1]T , and b3 = [0 1]T. The corresponding ADP set for the case is 
calculated using a standard convex hull algorithm in Matlab, and shown in the left part of Figure 14.  

The case when the ADP set changes due to failures, disturbances and other upsets will be considered next. For 
instance, if the first control effector locks in place at the value 

! 

u i , the equality constraint is now of the form b2u2 
+b3u3 = η - b1

! 

u i . The failures of the other effectors can be studied in the same way. For all values of 

! 

u i  between 
[-1, 1], the ADP set changes as shown in Figures 14 and 15. It is seen that, in each case, the ADP sets are of the 
same size for all values of 

! 

u i . This is due to the fact that there are only two ”healthy” control effectors, while the 
location of the ADP set depends on the value at which the failed effector has frozen.  

In the case of loss-of-effectiveness, the coefficients ki multiplying each control input change from [0, 1]. The 
resulting changes of the ADP sets are shown in Figure 16. It is seen that the ADP set in the case of ki =0 coincides 
with that for the case of LIP failure and 

! 

u i =0.  
As seen from the above example, the ADP set can change substantially due to a failure, which may limit the set 

of UAV commands that can be followed. The above problems emphasize the importance of fast and accurate FDI 
and disturbance estimation for effective on-line calculation of the ADP set.  
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Fig. 14  Nominal ADP set (left) and changes in the ADP set due to a hard-over failure control effector u1 
(right). 

 

 
Fig. 15  Changes in the ADP set due to a hard-over failure control effector u2 (left) u3 (right). 

 

D. ADP in the Case of Non-Affine Vehicle Dynamics 
In this case, the Eqs. (1) and (2) are extended to include a nonlinearity that is non-affine in u, and the 

representation of the flight mode and uncertain parameters, resulting in the system of the form:  
 
 

! 

˙ x 1 = f1 x2( )  (19)  
 
 

! 

˙ x 2 = f2 x1, x2,u," , p( )  (20)  
 

where λ denotes the flight mode, and p is a vector of parameters whose values are not always known precisely.  
The flight mode λ is a discrete variable taking values in {1,···,M}. Here the flight mode refers to all operating 

conditions, including failure modes and battle damage, that change the flight dynamics of the vehicle. The parameter 
vector p may include variables such as moments of inertia and aerodynamic stability derivatives that may not be 
known precisely, for example, after battle damage. It is possible that the components of the vector p may be known 
with great accuracy in some flight modes, but in other modes they will need to be estimated in flight using input-
output data.  

Flight vehicles must also satisfy certain constraints. The constraints can be grouped into: (a) Path space 
constraints which limit kinematic variables: g1(x1) ≤ 0, (b) Flight dynamic constraints which limit dynamic variables 
such as airspeed and accelerations: g2(x1, x2 ,λ, p) ≤ 0, and (c) Control input constraints which limit the control 
inputs u: u ∈ Su. A control input is said to be feasible if it satisfies control input constraints. A trajectory is said to be 
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feasible if there is a feasible control input sequence which, when applied to the system, produces a state trajectory 
that satisfies both path space and flight dynamic constraints.  
 

 
Fig. 16  Changes in the ADP set due to a loss-of-effectiveness failure of control effector u1 (upper left), u2 
(upper right), and u3 (lower figure). 

 

Let the following variables be fixed: a state variable 

! 

x = " x 1, " x 2[ ]", a flight mode λ and a parameter p, leaving the 
control input u as the only variable in Eq. (2). Define the set:  
 

! 

ˆ S x," , p( ) = f2 x1, x2,u," , p( ) : u # Su "( ){ }  

 
which is the set of all achievable rates of change of dynamic state variables at (x, λ, p). The ADP problem in the 
non-affine case is to characterize 

! 

ˆ 
S  for each x, λ, and p. Since the effect of u is additive in the affine case, the ADP 

problem can be stated without reference to x. If, in addition, f(x) = Ax, which corresponds to the linear case, the set 

! 

ˆ 
S  can be obtained by translating the set Sη by Ax. A consequence is that the shape of ADP set in the linear case is 
changed only by changes in λ and p. The nonlinear non-affine case is considerably different in these aspects. 
Though one of the objectives of ADP calculation is to characterize 

! 

ˆ 
S  exactly, its non-convexity causes 

computational difficulties. Hence some approximation is needed, and one possibility is to approximate 

! 

ˆ 
S  using a 

convex inner approximation. As an illustration, consider the region 

! 

ˆ 
S  shown on the left hand side in Figure 17. 

Choose a vector c1 and define a hyperplane:  
 
 

! 

" c 1z = #  
 

where γ is a real number. The figure shows this plane, when γ  = b1, as cutting the set 

! 

ˆ 
S . If this plane is translated in 

a perpendicular direction as shown, it will eventually become tangent to 

! 

ˆ 
S  for some value of γ. Similarly, if one 

moves in the other direction, there will be another point (and another value of γ) at which tangency is achieved. 
These tangent points can be found by solving the following optimization problems:  
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! 

max

z " ˆ S 
# c 1z and

min

z"
ˆ S 
# c 1z  

 
i.e, at the tangent points 

! 

" c 1z  is either a maximum or a minimum (geometrically, at these points, the set 

! 

˙ 
S  lies on one 

side of the plane). By repeating this procedure for several vectors c2, c3,··· ,ck, the points that are on the boundary of 
the set to be approximated can be found. The polytope formed as the convex hull of these tangent points is a 
candidate inner approximation set. While it cannot be guaranteed that the procedure will produce an inner 
approximation as shown on the right hand side in Figure 17, this problem can be rectified by approximating 

! 

ˆ 
S  by a 

union of a finite number of polytopes instead by a single polytope.  
 

VI. � Verification and Validation of Intelligent and Adaptive Control Systems  
Flight critical software and systems requirements assert that the occurrence of any failure condition that would 

prevent the continued safe flight and landing of the airplane shall be extremely improbable. These requirements are 
commonly specified in terms of a probability of loss of control (PLOC) due to failure being less than 10-7 for 
manned military aircraft, and 10-9 for unmanned aircraft. The PLOC requirement is currently verified through semi-
exhaustive quantitative and qualitative test methods. However, in the case of autonomous aerial vehicles, one can 
expect an exponential growth in size and complexity of their flight critical systems and particularly their flight 
control software as a result of the need to perform advanced control and autonomous decision-making functions on-
board (see Figure 18). The new required functionalities for the flight control system bring in unconventional 
architectures and algorithms, and software and hardware implementations. While traditional verification and 
validation (V&V) practices have produced safe and reliable software and systems, they will not be cost effective for 
autonomous systems that support these advanced control and decision-making capabilities. Affordable V&V of 
flight critical systems and software is by far the most important challenge facing both commercial and military 
aerospace industry in the United States. Advanced control and autonomous decision-making capabilities give rise to  
several major V&V issues. A list of some of these problems is included below, along with suggestions on how to 
address them.40,41  

 

 
Fig. 17  Construction of a polytopic inner approximation. 

A. Requirements Definition and Evaluation Criteria 
Ideally, requirements and evaluation criteria are available in formal notation that is understood by a model 

checker, or in a manner that suggests a sufficient suite of tests. Several difficulties arise in practical applications. 
First, the requirements may be stated in natural language which must be interpreted/translated in a contextually 
correct manner. The translated requirement may not fully capture the intent of the original requirement leading to 
costly design iterations. Second, the requirements may be statistical in nature, for example, probability of loss of 
control (PLOC), and those regarding failure accommodation. Though precise, statistical requirements and evaluation 
criteria do not fit into the logical framework of existing formal verifiers. Third, for historical reasons, many aerial 
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vehicle requirements and evaluation criteria are in the frequency domain, for example MIL-STD requirements on 
short period damping, whereas the natural domain for analysis and design for nonlinear systems is time-domain. 
These and other difficulties indicate the need for a V&V-friendly requirements definition and performance 
evaluation standard.  

 

 
Fig. 18  Projected increases in source-line-of-code (SLOC) and testing for unmanned air vehicles21 (URAV-
unmanned reconnaissance air vehicle, UCAV-unmanned combat air vehicle). 

Also, in current practice, past development effort is the primary guide for deriving component requirements from 
system-level requirements. This top-down approach may not be cost-effective or even feasible for intelligent 
autonomous systems which may exhibit new behaviors such as cooperation, coalition formation, and competition. 
Thus, a bottom-up approach of determining system-level behavior from component behaviors or perhaps a 
combination of both may be needed to verify and validate intelligent systems. These are deep current research issues 
in the area of hybrid and embedded systems.  

B. Uncertainty and Adaptation 
The most important feature that separates autonomous intelligent control systems from their traditional 

counterparts is uncertainty. While every control system can accommodate some amount of uncertainty, intelligent 
control systems are expected to perform in the presence of very large uncertainties by employing different 
adaptation and learning algorithms. However, on-line learning and adaptation raises the issue of their V&V, as 
discussed below.  

By definition, the verification problem is to determine if a system satisfies a specification. A system can be 
thought of as a representation of all possible behaviors. In such a context, a specification describes a set of 
admissible behaviors, and a verified system behaves in an admissible manner. For example, in an intelligent FDI 
system, behavioral representations of known failure modes are used to detect and identify the failure, and safe 
behaviors are de fined as those in which the failure is accommodated. However, if there is a failure that falls outside 
a set of anticipated failure modes, the V&V problem quickly becomes intractable since both formal representation 
and related specifications are lacking in such a case. Hence the issue of how to represent the uncertainties and 
associated formal specifications are fundamental problems in the V&V of intelligent and adaptive control systems. It 
can be concluded that currently a formal V&V framework for adaptive and learning control systems does not exist, 
and that very little is known about efficient testing of such systems. An initial study discussing a possible framework 
for V&V of adaptive control systems is reported recently40,41 and discussed below.  

The closed loop system obtained from the hierarchical intelligent control system described in the previous 
sections, as well as a large class of existing flight control systems are hybrid systems with state-dependent switching 
of the form:  
 

! 

˙ x = f" (x) + g" (x)w if x(t) #  X"  
 

where 

! 

x t( ) " Rnx  is the real-valued state, w is an exogenous input belonging to set W, λ is the discrete-valued state 

taking values in {1,2,··· ,N}, and the subsets {X1,··· ,XN } form a partition of the state space 

! 

R
n
x . The real-valued 
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state follows the dynamics given by fi, gi in the interior of the ith state space region Xi. When the state reaches the 
boundary of Xi, a formula (the mode switching logic) of the form:  
 

! 

h x," ,i( ) # 0  
 
is evaluated to determine the next discrete-valued state. An approximate verification procedure for this class of 
systems has been recently developed.40,41 The underlying computational approach is analogous to the behavioral 
approach to model checking of finite state systems.25,29 In the behavioral approach to finite state systems, the system 
and the specification are represented by automata. The problem of checking if the system satisfies the specification 
then becomes a language emptiness problem. There are well-known combinatorial/graph theory algorithms to 
efficiently solve emptiness problem.25 This approach for hybrid systems verification was chosen since it permits the 
use of linear matrix inequality (LMI)/convex programs for reach set computations and because many existing model 
checkers for finite state machines such as SPIN29 use behavioral approach and can be adapted to this approach by 
equipping them with convex/LMI solvers. Even with the use of LMI/convex methods, most properties of hybrid 
systems cannot be verified exactly.4 This is a consequence of the universal simulation properties of hybrid systems 
and Rice’s theorem.37 The above discussed verifier is approximate and iterative with the following guarantee: if the 
iterations terminate, then the system satisfies the requirements. Figure 19 shows the iterative process. Since 
engineers consciously put in safety margins during design, the iterations are expected to converge in practical 
applications.  
 

 
Fig. 19  Overall structure of the hybrid systems verifier. 

C. Computational Complexity 
 The sheer size and complexity of intelligent control systems are beyond the capabilities of existing formal 
verifiers. Therefore, it is important to identify scalable algorithms and techniques. Abstraction, compositional 
reasoning, use of domain-specific methods and automatic test generation are some topics that should be investigated. 
These are currently topics of vigorous research in the formal methods area.25,29–31,38 It is known that most properties 
of realistic intelligent systems cannot be formally verified. For example, a number of results on undecidability of 
stability properties of gain scheduled systems are currently available. These negative results have effected a 
compromise in the notion of solving a problem from the crisp yes/no to a probabilistic notion. Borrowing from the 
theory of learning,44 the concept of a probably approximately correct (PAC) verifier is introduced. This verifier 
estimates, in polynomial-time, the probability that a certain property is satisfied by the intelligent system.* Another 
source of complexity comes from the fact that intelligent systems are open systems as opposed to closed systems 
whose behaviors are completely determined by the system state. An open system is a system that interacts with its 
environment and whose behavior depends on the interaction. It has been shown33 that model checking for open 
systems is EXPTIME-complete for Computation Tree Logic (CTL) specifications. Here also a shift to probabilistic 
verification appears as an attractive direction for future research.  

D. Translation/Model Extraction Tools 
                                                             
*A typical phenomenon in computation complexity is that, by considering probabilities rather than yes/no answers, efficient 
algorithms for hard problems can be designed.  One of the primary reasons for the limited applicability of model checking and 
other formal tools is their insurance on a yes/no answer. 
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 Engineers are less likely to use a formal verifier or an automatic test generator if it requires system 
representation in a format other than their native design/development language. For example, while control 
engineers understand and mainly work with SIMULINK/STATEFLOW diagrams, most model checkers require 
system representation in a different formal language (e.g. PROMELA for SPIN29). In order to gain acceptance of 
practicing engineers, software tools that can automatically translate control systems code from their native 
developmental language to the verification model need to be developed. This is an active research area at NASA 
(e.g. translation of Livingstone language to Symbolic Model Verifier31), Carnegie-Mellon University, and at other 
institutions. At present, except for the work reported in Refs. 24 and 41 there is no translation tool for hybrid 
systems making the verification process difficult at the early and mid-stages of flight vehicle development.  

The growing use of software tools for design and simulation by aircraft manufacturers has also increased the 
prospects of extensive testing of control system designs before they are realized in software and implemented on the 
target processor since the detection and correction of errors in the early development phase are the most effective 
ways to reduce cost. Unfortunately, these software tools and translators are available only for a limited class of 
systems that does not contain intelligent and adaptive systems.  

A typical phenomenon in computational complexity is that, by considering probabilities rather than yes/no 
answers, efficient algorithms for hard problems can be designed. One of the primary reasons for the limited 
applicability of model checking and other formal tools is their insistence on a yes/no answer.  

 

VII. � Conclusions 
 The design of fully autonomous intelligent flight control systems for both single and multiple UAVs is a 
formidable task. In this paper many of the issues that arise in the context of design of such complex controllers are 
described and some recent results are discussed.  

In particular, a four-layer autonomous intelligent control architecture for UAVs is described, and related issues 
are discussed. The architecture consists of the following layers: (i) Redundancy Management Layer that consists of 
the on-line Failure Detection and Identification (FDI) and robust feedback Adaptive Reconfigurable Controller 
(ARC); (ii) Autonomous Trajectory Generation (ATG) layer whose role is to fit feasible trajectories through the 
desired way-points in real time; (iii) Autonomous Path Planning (APP) layer that generates way-points on-line in 
response to a dynamically changing environment; and (iv) Autonomous Decision Making (ADM) layer whose role 
is to assess the available control authority after failures, and make mission-related decisions in near-real time. 
Recent extensions of this architecture are also discussed and described in detail. At the end, a discussion is included 
on the V&V of intelligent and adaptive control systems and some recent results are presented.  

The main contribution of the paper is an architecture for autonomous intelligent control of UAVs in which the 
layers are connected through the Achievable Dynamic Performance (ADP) calculation module. This results in a 
system in which all the decisions are made based on an optimum use of the current available resources.  
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